Induction of Enhanced Acoustic Startle Response by Noise Exposure: Dependence on Exposure Conditions and Testing Parameters and Possible Relevance to Hyperacusis
نویسندگان
چکیده
There has been a recent surge of interest in the development of animal models of hyperacusis, a condition in which tolerance to sounds of moderate and high intensities is diminished. The reasons for this decreased tolerance are likely multifactorial, but some major factors that contribute to hyperacusis are increased loudness perception and heightened sensitivity and/or responsiveness to sound. Increased sound sensitivity is a symptom that sometimes develops in human subjects after acoustic insult and has recently been demonstrated in animals as evidenced by enhancement of the acoustic startle reflex following acoustic over-exposure. However, different laboratories have obtained conflicting results in this regard, with some studies reporting enhanced startle, others reporting weakened startle, and still others reporting little, if any, change in the amplitude of the acoustic startle reflex following noise exposure. In an effort to gain insight into these discrepancies, we conducted measures of acoustic startle responses (ASR) in animals exposed to different levels of sound, and repeated such measures on consecutive days using a range of different startle stimuli. Since many studies combine measures of acoustic startle with measures of gap detection, we also tested ASR in two different acoustic contexts, one in which the startle amplitudes were tested in isolation, the other in which startle amplitudes were measured in the context of the gap detection test. The results reveal that the emergence of chronic hyperacusis-like enhancements of startle following noise exposure is highly reproducible but is dependent on the post-exposure thresholds, the time when the measures are performed and the context in which the ASR measures are obtained. These findings could explain many of the discrepancies that exist across studies and suggest guidelines for inducing in animals enhancements of the startle reflex that may be related to hyperacusis.
منابع مشابه
Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus?
Perceptual abnormalities such as hyperacusis and tinnitus often occur after acoustic overexposure. Although such exposure can also result in permanent threshold elevation, some individuals with noise-induced hyperacusis or tinnitus show clinically normal thresholds. Recent work in animals has shown that a "neuropathic" noise exposure can cause immediate, permanent degeneration of the cochlear n...
متن کاملNoise exposure enhances auditory cortex responses related to hyperacusis behavior.
Hyperacusis, a marked intolerance to normal environmental sound, is a common symptom in patients with tinnitus, Williams syndrome, autism, and other neurologic diseases. It has been suggested that an imbalance of excitation and inhibition in the central auditory system (CAS) may play an important role in hyperacusis. Recent studies found that noise exposure, one of the most common causes of hea...
متن کاملProlonged Exposure of CBA/Ca Mice to Moderately Loud Noise Can Cause Cochlear Synaptopathy but Not Tinnitus or Hyperacusis as Assessed With the Acoustic Startle Reflex
Hearing loss changes the auditory brain, sometimes maladaptively. When deprived of cochlear input, central auditory neurons become more active spontaneously and begin to respond more strongly and synchronously to better preserved sound frequencies. This spontaneous and sound-evoked central hyperactivity has been postulated to trigger tinnitus and hyperacusis, respectively. Localized hyperactivi...
متن کاملInvestigation of combined effects of noise and low air temperature on human-environmental comfort and physiological responses- An experimental study
Background and Aim: Combined exposure to noise and temperature can affect the neurophysiological responses of the office staff. The present study was done to investigate the impacts of combined exposure to noise and low air temperature on physiological responses and environmental comfort. Methods: In this experimental study, the studied population included the students who were randomly selecte...
متن کاملEffects of Co-Exposure to Noise and JP-4 Jet Fuel on Hearing Loss in Rats
Background and Aim: Autotoxic substances such as JP-4 jet fuel can have negative effects on the auditory system by the various means such as cochlear dysfunction. The purpose of this study was to investigate the combined effects of exposure to JP-4 jet fuel and noise on hearing loss in rats, to determine the possible interference effects of these two risk factors on rat auditory system. Methods...
متن کامل